Assignment 8

- 1. Show that a metric space (X, d) is complete if and only if, whenever closed sets E_k , $k \ge 1$, satisfy $E_{k+1} \subset E_k$ and diam $(E_k) \to 0$, $\bigcap_{k=1}^{\infty} E_k \neq \phi$. The definition of the diameter of a set in a metric space is self-evident. Provide one first.
- 2. Let B(X, Y) denoted all bounded maps from metric spaces X to Y.
 - (a) Show that the supnorm induces a complete metric on B(X, Y) provided Y is complete.
 - (b) Show that $C_b(X,Y) \subset B(X,Y)$ consisting of bounded, continuous maps is closed and hence complete in B(X,Y).
- 3. Let (X, d) be a metric space. Fixing a point $p \in X$, for each x define a function

$$f_x(z) = d(z, x) - d(z, p)$$

- (a) Show that each f_x is a bounded, uniformly continuous function in X.
- (b) Show that the map $x \mapsto f_x$ is an isometric embedding of (X, d) to $C_b(X)$ (shorthand for $C_b(X, \mathbb{R})$). In other words,

$$||f_x - f_y||_{\infty} = d(x, y), \quad \forall x, y \in X.$$

(c) Deduce from (b) the completion theorem.

This approach is much shorter than the proof given in notes. However, it is not so inspiring.

- 4. Let $f: E \to Y$ be a uniformly continuous map where $E \subset X$ and X, Y are metric spaces. Suppose that Y is complete. Show that there exists a uniformly continuous map F from \overline{E} to Y satisfying F = f in E. In other words, f can be extended to the closure of E preserving uniform continuity.
- 5. Let T be a continuous map on the complete metric space X. Suppose that for some k, T^k becomes a contraction. Show that T admits a unique fixed point. This generalizes the contraction mapping principle in the case k = 1.
- 6. Let K be a convex, closed and bounded set in \mathbb{R}^n and $f: K \to K$ a C^1 -map satisfying $|\partial f_i/\partial x_j| < 1$ in K. Show that f is a contraction and hence admits a unique fixed point.
- 7. Show that every continuous function from [0, 1] to itself admits a fixed point. Here we don't need it a contraction. Suggestion: Consider the sign of g(x) = f(x) x at 0, 1 where f is the given function.
- 8. Consider the iteration

$$x_{n+1} = \alpha x_n (1 - x_n), \ x_1 \in [0, 1]$$
.

Find

- (a) The range of α so that $\{x_n\}$ remains in [0, 1].
- (b) The range of α so that the iteration has a unique fixed point 0 in [0, 1].
- (c) Show that for $\alpha \in [0, 1]$ the fixed point 0 is attracting in the sense: $x_n \to 0$ whenever $x_0 \in [0, 1]$.
- 9. Let $f : \mathbb{R} \to \mathbb{R}$ be C^2 and $f(x_0) = 0, f'(x_0) \neq 0$. Show that there exists some $\rho > 0$ such that

$$Tx = x - \frac{f(x)}{f'(x)}, \quad x \in (x_0 - \rho, x_0 + \rho)$$

is a contraction. This provides a justification for Newton's method in finding roots for an equation.